长兴郴障科技有限公司

澎湃Logo
下載客戶端

登錄

  • +1

1天內篩選超1億種化合物:AI語言模型“提速”藥物發現

張夢然/科技日報
2023-06-13 08:06
生命科學 >
字號

美國麻省理工學院和塔夫茨大學研究人員設計出一種基于大型語言模型(如ChatGPT)的人工智能算法,這種稱為ConPLex的新模型可將目標蛋白與潛在的藥物分子相匹配,而無需執行計算分子結構的密集型步驟。相關論文發表在最新一期《美國國家科學院院刊》上。

使用這種方法,研究人員可在一天內篩選超過1億種化合物,比任何現有模型都要多得多。這項成果解決了對當前藥物篩選的需求,其可擴展性還能夠評估脫靶效應、藥物再利用以及確定突變對藥物結合的影響。

近年來,科學家在根據氨基酸序列預測蛋白質結構方面取得了巨大進步。然而,要預測大型潛在藥物庫如何與致癌蛋白相互作用,依然具有挑戰性,因為計算蛋白質三維結構需要大量時間和計算能力。

麻省理工學院團隊以他們2019年首次開發的蛋白質模型為基礎,此次將模型應用于確定蛋白質序列將與特定藥物分子的相互作用。他們用已知的蛋白質—藥物相互作用對網絡進行訓練,使其能學習將蛋白質特定特征與藥物結合能力聯系起來,而無需計算任何分子的三維結構。

通過篩選包含約4700種候選藥物分子的庫,團隊測試了他們的模型,并確定了這些藥物與51種蛋白激酶結合的能力。

從熱門結果中,研究人員選擇了19組“藥物—蛋白質對”進行實驗測試,最終12對具有很強的結合親和力,而幾乎所有其他可能的藥物—蛋白質對都沒有親和力。

研究人員表示,藥物研發成本之所以如此高昂,部分原因是它的失敗率很高。如果能事先預測這種結合不可能奏效,就能減少失敗率,從而大大降低新藥開發的成本。

【總編輯圈點】

在我們普通人還在用語言模型聊天和寫作時,科研人員已經看到了它在藥物篩選方面的變革性潛力。藥物研發耗時漫長且相當昂貴,要做大量的“無用功”。人工智能已經被引入這一枯燥漫長的過程,幫助縮短分子配對的時間。文中介紹的新模型ConPLex可以分析大量文本,并找到最可能出現在一起的組合。這種基于語言模型研究的思路,超越了目前最先進的算法,可在一天內篩選超過1億種化合物。論文已經對篩選結果進行了實驗檢測,結果也令人欣喜。

(原標題《一天內篩選超一億種化合物——AI語言模型“提速”藥物發現》)

    責任編輯:盧雁
    圖片編輯:金潔
    澎湃新聞報料:021-962866
    澎湃新聞,未經授權不得轉載
    +1
    收藏
    我要舉報
            查看更多

            掃碼下載澎湃新聞客戶端

            滬ICP備14003370號

            滬公網安備31010602000299號

            互聯網新聞信息服務許可證:31120170006

            增值電信業務經營許可證:滬B2-2017116

            ? 2014-2025 上海東方報業有限公司

            反饋
            免费百家乐追号工具| 中华德州扑克协会| 网上百家乐开户送现金| 豪华百家乐官网桌子| 辽阳县| 博彩行业| 百家乐破战| 风水24山读法| 百家乐官网园小区户型图 | 百家乐透明发牌机| 百家乐平台是最好的娱乐城| 东莞百家乐官网的玩法技巧和规则| 大发888代理充值| 海王星百家乐官网技巧| 网络百家乐官网娱乐| 曼哈顿百家乐娱乐城| 宝格丽百家乐官网娱乐城| 华克山庄娱乐| 娱乐城开户送钱| 澳门博彩公司| 大杀器百家乐学院| 百家乐官网有送体验金| 利记娱乐场| bet365官方| 盈乐博| 360博彩通| 湾仔区| 微博| 百家乐官网游戏试玩免费| 百家乐官网玩法的秘诀| 唐人博彩| 豪华百家乐桌子| 百家乐庄闲的分布| 百家乐怎么玩啊| 永利百家乐开户| 百家乐最新首存优惠| 百家乐电脑赌博| 破战百家乐的玩法技巧和规则| 百家乐斗视频游戏| 网络百家乐漏洞| 有钱人百家乐的玩法技巧和规则 |